Environmental modelling
Contents |
[edit] Introduction
Environmental modelling involves the application of multidisciplinary knowledge to explain, explore and predict the Earth’s response to environmental change, both natural and human-induced.
Environmental models can be used to study many things, such as:
- Climate.
- Coastal changes.
- Hydro-ecological systems.
- Ocean circulation.
- Surface and groundwater.
- Terrestrial carbon.
- The behaviour of enclosed spaces.
- The behaviour of spaces around buildings.
According to the Environment Protection Agency (EPA) (2009a), a model is defined as:
‘A simplification of reality that is constructed to gain insights into select attributes of a physical, biological, economic, or social system. A formal representation of the behaviour of system processes, often in mathematical or statistical terms. The basis can also be physical or conceptual.’ |
Models can be used to improve understanding of natural systems and their reactions to changing conditions. They can also help inform decisions and policy.
Models are becoming increasingly sophisticated as computational power increases and our knowledge of processes and behaviours improves, but they will never completely replicate the full complexity of environmental system, and must be based on simplifications of, and assumptions about, environmental processes. Despite these limitations, models can be invaluable tools in helping diagnose what has taken place, to examine the causes of behaviour and to forecast outcomes and future events.
Before beginning modelling, it is important to identify the limitations and boundaries of available models, or models that can be created, how they can be applied and to which systems and situations.
When developing a model the following questions should be considered:
- What are the processes that the model is attempting to reproduce or include?
- What is the time scale for these processes?
- What is the spatial scale of these processes?
- How reliable will the results be?
- How will the results be used?
- Do the benefits of modelling outweigh the cost?
- Is an alternative means of assessment available?
[edit] Types of model
There are a number of different kinds of model, including:
- Empirical: Relying on observed relationships in experimental data.
- Mechanistic: Including the underlying mechanisms and processes between the variables.
- Deterministic: Changes in model outputs are due to changes in model components, meaning that repeated tests under constant conditions will produce consistent results.
- Probabilistic: Utilising the entire range of input data to develop a probability distribution of model output rather than a single point value.
- Dynamic: Predict the way a system may change over time or space.
- Static: Predict the way a system may change as the value of an independent variable changes.
[edit] Model life-cycle
The model life-cycle may include a number of stages.
Identification:
- Determine the correct decision-related questions and establish the modelling objectives.
- Define the purpose of the modelling activity.
- Specify the context of the model application.
Development:
- Develop the conceptual model that reflects the underlying science of the included processes.
- Develop the mathematical representation of that science.
Evaluation:
- Peer review.
- Formal testing to ensure the correct encoding of model expressions.
- Comparison with empirical data to test model outputs.
Application:
[edit] Data quality
It is important that data upon which environmental modelling is based is of a high quality. Data which is of poor quality will not yield model results of a higher quality.
Some of the indicators of data quality include:
- Precision.
- Bias.
- Representativeness.
- Comparability.
- Completeness.
- Sensitivity.
[edit] Model availability
Modelling complex systems has in the past been carried out by experts who have a sound understanding of the processes involved, and a good grasp of the sort of input data that is required and the outputs that are likely to be generated. In effect, the model would, to a certain extent, simply confirm what they already expected. If the model produced unexpected results, they would re-assess the inputs, the model and the outputs to understand why.
As computers have become increasingly powerful, more data has become available, and software developers have begun to give models more user-friendly front ends, and visually attractive outputs, modelling has become accessible to non-experts. Whilst this can be positive, in that it allows greater use of sophisticated analytical tools, it can also be very dangerous, as the inexperienced modeller is more likely to accept model outputs as 'facts' rather than simply a contributing part of a wider analytical process that should be regarded with healthy scepticism.
[edit] Related articles on Designing Buildings Wiki
- Carbon plan.
- Civil engineers must report climate-change risk.
- Climate change science.
- Computational fluid dynamics.
- Construction environmental management plan.
- Conventions for calculating linear thermal transmittance and temperature factors.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Energy targets for buildings.
- Environment.
- Environmental impact.
- Environmental impact assessment EIA.
- The design of temporary structures and wind adjacent to tall buildings.
- The thermal behaviour of spaces enclosed by fabric membranes (Thesis).
- Thermal behaviour of architectural fabric structures.
Featured articles and news
One of the most impressive Victorian architects. Book review.
RTPI leader to become new CIOB Chief Executive Officer
Dr Victoria Hills MRTPI, FICE to take over after Caroline Gumble’s departure.
Social and affordable housing, a long term plan for delivery
The “Delivering a Decade of Renewal for Social and Affordable Housing” strategy sets out future path.
A change to adoptive architecture
Effects of global weather warming on architectural detailing, material choice and human interaction.
The proposed publicly owned and backed subsidiary of Homes England, to facilitate new homes.
How big is the problem and what can we do to mitigate the effects?
Overheating guidance and tools for building designers
A number of cool guides to help with the heat.
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.